
Aion: Efficient Temporal Graph Data Management
Georgios Theodorakis

Neo4j
george.theodorakis@neo4j.com

James Clarkson
Neo4j

james.clarkson@neo4j.com

Jim Webber
Neo4j

jim.webber@neo4j.com

ABSTRACT
Modern graph database management systems (DBMSs) can pro-
cess highly dynamic labeled property graphs (LPGs) with many
billions of relationships comfortably, but those systems often
ignore the temporal dimension of data, how a graph evolved over
time. Temporal analytics allow users to query and compute over
the graph throughout its history so that valuable line-of-business
data is always accessible and never lost. However, existing ap-
proaches tend to be ad-hoc and vary in performance depending
on the size of the effective graph workload, such as local pattern
matching or global graph algorithms.

In this work, we describeAion, a transactional temporal graph
DBMS that generalizes previous approaches for LPGs. Aion ex-
tends Neo4j, a modern graph DBMS, incurring minimal perfor-
mance overhead by decoupling the graph’s history from the latest
graph version. To support efficient temporal analytics indepen-
dently of workload characteristics, Aion adopts a hybrid tempo-
ral storage approach: (i) for fast full graph restoration at arbitrary
time points, it uses TimeStore that indexes updates by time; (ii) for
fine-grained graph history accesses, it uses LineageStore that in-
dexes updates by entity identifiers. To enable incremental graph
computations for improved latency, Aion introduces a compute-
efficient in-memory LPG representation. Our experiments show
that Aion achieves comparable or better performance versus
existing non-transactional temporal systems and provides up to
an order of magnitude speedup over classic Neo4j.

1 INTRODUCTION
Systems designers are increasingly turning to graph technology
($3.2 B estimated market size by 2025 [60]) to manage the volume
and associative complexity of modern data. To accommodate such
increasing demands, commercial graph database management
systems (DBMSs) [5, 46, 50, 75] allow users to model real-world
interactions as a set of nodes and relationships at many billions
or trillion scale [52]. While these systems have made a significant
impact, to date, they have generally lacked native support for
analyzing the evolution of a graph over time.

Temporal analytics span a wide range of use cases, from data
auditing [66] (e.g., HIPAA privacy compliance) and anomaly
detection in IoT devices [45], to mining trends over time [7, 8,
67], and restoring data to a previous version (i.e., perform data
repair). These are important classes of applications, and graph
DBMSs must be able to support them regardless of the prevailing
characteristics of their workloads.

Relational DBMSs have addressed the problem of temporal
analytics over a single table [58, 63, 66], and temporal validity
is even a standardized SQL:2011 [36] feature. However, main-
taining the history of a graph without a predefined schema is
challenging. In response, solutions involving commercial graph
systems [13, 20, 64] enhance the labeled property graph (LPG)

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-095-0 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

model [61] to store historical data as extra graph entities. While
this may help solve the functional problem, it complicates ap-
plication logic and incurs potential performance penalties for
non-temporal workloads. Another approach is to capture the
temporal behaviour using a sequence of snapshots by storing the
graph state at specific time points along with the deltas between
those snapshots [27, 30, 31, 34, 45]. Again, this theoretically solves
the functional problem, but it is prohibitively expensive for point-
or small-neighbourhood queries. Finally, systems such as Raph-
tory [67] or IBM SystemG [76] store the history of individual
graph entities together, which allows fast local graph accesses
but may result in an expensive all-history scan for full graph
reconstruction.

The goal of this work is to design and implement a transac-
tional graph DBMS that accounts for the following challenges
of temporal applications: (i) handle the dynamically changing
structure of LPGs (i.e., schemaless data); (ii) enable temporal capa-
bilities without affecting non-temporal operations (i.e., querying
the latest version of the graph); (iii) efficient storage and retrieval
of graph history for different workloads (i.e., handle time and
graph size dimensions); and (iv) efficient query execution over
parts of data that remain the same between time points. Specifi-
cally, our contributions are as follows:
(i) Temporal graph data model.We formalize temporal graphs
by enhancing LPGswith time capabilities that allow (bi-)temporal
graph analytics. We extend Cypher (an SQL-like graph query
language for graphs [22]) with temporal constructs and introduce
idiomatic procedures for incremental processing from Cypher.
(ii) Temporal graph storage. To support efficient access to
historical global graphs and subgraphs, we design a general-
purpose temporal graph system called Aion1, which exposes an
intuitive API to retrieve various temporal graph access patterns.
Based on the workload characteristics, Aion can choose between
two temporal stores: (i) TimeStore for full graph snapshots and
(ii) LineageStore for efficient fine-grained graph history access
without user intervention.
(iii) Integration with commercial graph DBMS. We inte-
grate Aion with Neo4j2 to provide transactional guarantees for
temporal queries. In addition, usingAion, we support efficient in-
cremental graph computations by introducing a memory-friendly
dynamic LPG data structure.

Our experimental evaluation highlights the benefits of our
design: (i) for global queries, Aion outperforms Raphtory and
Gradoop, two in-memory non-transactional temporal systems, by
up to 7.3× and 52.2×, respectively; (ii) for point queries, it upholds
comparable throughput to Raphtory and orders of magnitude
higher performance than Gradoop, while providing support for
out-of-core workloads. When integrated with Neo4j, Aion incurs
only 28-41% storage increase and less than 15% ingestion perfor-
mance overhead. At the same time, normal read transactions are
unaffected by Aion, and temporal analysis is accelerated by up
to an order of magnitude.

1Aion is a Hellenistic deity associated with cyclic time.
2The source code is available at https://github.com/Neo4jResearch/Aion.

Series ISSN: 2367-2005 501 10.48786/edbt.2024.43

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.43

The remainder of the paper is organized as follows: first, we
explain the problem of temporal graph processing and survey
state-of-the-art approaches (Sec. 2). We present our temporal
graph model and Cypher extensions (Sec. 3); and then describe
how Aion performs temporal graph storage (Sec. 4) before dis-
cussing how we integrate Aion with Neo4j (Sec. 5) to enable fast
incremental computations. Finally, the paper presents our evalua-
tion results (Sec. 6), related work (Sec. 7), and conclusions (Sec. 8).

2 BACKGROUND
This section introduces the salient concepts of graph DBMSs
and temporal graph analytics. First, we categorize different tradi-
tional graph systems (Sec. 2.1). Then, we provide background on
temporal data management (Sec. 2.2), and finally introduce the
basics of incremental graph processing (Sec. 2.3).

2.1 Graph Databases
In this work, we focus on systems that support the LPGmodel [61],
in which optionally labeled nodes in a graph represent entities
that, in turn, are connected by named, directed relationships. Both
nodes and relationships can host properties as key-value pairs.
This model is common to many modern graph databases for on-
line transactional processing and graph engines for online analyt-
ical processing. Prominent examples of graph databases include
MemGraph [46], Neo4j [50], Neptune [5], and TigerGraph [75],
which are designed to handle dynamically changing graphs at
significant volume. Analytical engines enable high-performance
(often parallel) graph computations on (static) graphs by adopt-
ing the vertex-centric model (see Pregel [43], GraphLab [41],
Giraph [17], or GraphX [81]).
Neo4j transactional processing and analytics. Neo4j [50] is
a graph DBMS for out-of-core workloads that maintains its own
page cache. All operations are transactional with (at least) read-
committed isolation. Users access the database using Java APIs
or Cypher [22] queries locally or over the network using an effi-
cient binary communication protocol called Bolt [55], whose be-
haviours are discussed in Sec. 6.7. For analytics on a static graph,
Neo4j has the Graph Data Science (GDS) library and runtime [57].
Users construct a static Compressed Sparse Row (CSR) [42] pro-
jection using the current graph and execute algorithms over it
by calling procedures from Cypher. As a popular graph database
with a pre-existing graph compute engine, we have chosen to
extend Neo4j for our experimental work in Aion. However, we
believe the techniques are applicable to a broader range of graph
database management systems, as discussed in Sec. 5.1.

2.2 Temporal Graph Data Management
In relational DBMSs, temporal analytics has been extensively
studied [63], resulting in temporal validity becoming part of
SQL:2011 standard [36]. Relational databases capture the history
of a table using the temporal table construct [58, 66] or allow
users to query directly changes atop tables [3]. Temporal SQL
distinguishes two time dimensions: (i) system (or transaction)
time, which represents when data was updated in the database;
and (ii) application (or event) time, a timestamp from when an
event occurred.

As the graph DBMSs from Sec. 2.1 do not have native support
for temporal operations, they have historically used the model-
based approach [28]. Graph entities are enriched with additional
time properties (e.g., validity duration), and historical data is
stored as extra nodes and relationships [13, 20, 64]. While this

approach works with existing systems, it requires complicated
application logic to perform graph operations [20] and incurs
significant storage and runtime overheads [45, 76]. For example,
Gradoop [62] is an analytical engine that supports distributed
execution over the model-based approach at the significant cost
of performing an all-history scan to retrieve valid graph parts.

Conversely, the snapshot-based approach [27, 30, 34, 35, 45]
captures temporal behaviour using a sequence of snapshots (i.e.,
graph state materialization at a specific time) and logs deltas [24]
between them. Graph updates and snapshots are stored in dis-
joint buckets, called time windows, enabling compact data stor-
age [34, 45]. Tegra [31] implements a different approach for stor-
ing snapshots atop persistent adaptive radix trees (pART) [39] and
is able to accelerate ad-hoc analytics on arbitrary timewindows of
the graph. Though snapshot storage is more efficient than model-
based storage, it remains prohibitively expensive for pattern-
matching queries that access small subgraphs (see Sec. 6.3), as it
requires full snapshot materialization.

At the other end of the spectrum, systems such as Raph-
tory [68], IBM SystemG [76], and TGDB [28] use a fine-grained
storage approach: graph updates are stored in a key-value store,
where the key is either a node or a relationship ID and the cor-
responding value is a list of that element’s history. For example,
with Raphtory, a distributed analytics system that maintains the
complete graph history in memory, its temporal graph model
allows updates via data streams (without transactions). However,
extracting the graph snapshot at an arbitrary time requires scan-
ning all updates. In practice, this is similar to the model-based
approach and negatively affects global query performance.

While temporal tables are the accepted solution for maintain-
ing history with a predefined schema, preserving the history of
a dynamically changing LPG is considerably more challenging.
The existing solutions tackle the problem by choosing one of the
following approaches: (i) model-based, (ii) snapshot-based, or
(iii) fine-grained storage. By choosing one solution, the systems
are biased towards its strengths and are sub-optimal in perfor-
mance terms for other workloads. A general-purpose temporal
graph storage engine should not fall foul of such biases and work
well for a wide range of workloads.

2.3 Incremental Execution of Graph
Algorithms

In contrast to the approaches described in Sec. 2.2, some systems
enable incremental execution, whereby previously computed
results can be used to shorten the execution time of a current
calculation. For example, Kickstarter [78] enables incremental
graph processing for monotonic algorithms like Breadth-First
Search and Connected Components by capturing lightweight
dependencies across results. Meanwhile, GraphBolt [44] tracks
fine-grained dependencies across intermediate values, which al-
lows the incremental computation of non-monotonic algorithms,
such as PageRank or Triangle Counting. However, these sys-
tems do not allow querying historical data and are not designed
for dynamic labeled property graphs. Chronos [27] is an offline
snapshot-based temporal engine that supports both historical
queries and incremental execution but requires an expensive pre-
processing step to retrieve snapshots from disk. Finally, Tegra [31]
introduces the Incremental Computation by entity Expansion
(ICE) model, which allows sharing arbitrary computations across
iterative graph queries. All these incremental approaches account
for node and relationship deletions.

502

3 TEMPORAL GRAPH DATA MODEL
We shall now discuss how we extended the LPG model [61] and
Cypher [22] to capture graph evolution over time.

Recall that LPG is defined as a pair 𝐺 = (𝑉 , 𝐸), where 𝑉 is
a set of nodes and 𝐸 is a set of relationships. Each node 𝑣 ∈
𝑉 consists of a tuple 𝑣 = (𝑛𝑖𝑑, 𝑙, 𝑝), with 𝑛𝑖𝑑 being a unique
identifier, 𝑙 a set of labels that tag the node, and 𝑝 a set of key-
value properties. Each relationship 𝑒 ∈ 𝐸 is represented as a tuple
𝑒 = (𝑟𝑖𝑑, 𝑠𝑟𝑐, 𝑡𝑔𝑡, 𝑙, 𝑝), where 𝑟𝑖𝑑 is a unique identifier, 𝑠𝑟𝑐 and
𝑡𝑔𝑡 denote the IDs of the nodes connected by the relationship, 𝑙
is a single (or empty) label, and 𝑝 a set of key-value properties.
The relationships are directed from 𝑠𝑟𝑐 to 𝑡𝑔𝑡 . The properties’
key is a string; the value can be a string, a primitive data type,
or an array type, while labels are strings. A relationship 𝑒 is
considered valid only if its 𝑠𝑟𝑐 and 𝑡𝑔𝑡 nodes are present in 𝐺 ,
including when 𝑠𝑟𝑐 and 𝑡𝑔𝑡 are the same. Clearly, when a node is
deleted, we must first delete its relationships to transition to a
new consistent graph state.
Graph updates. Let 𝑈 be a universe of graph updates, each an
operation of inserting, deleting, or updating a graph entity. We
assume these updates construct an infinite sequence of tuples
𝑆 = ⟨𝑢1, 𝑢2, . . .⟩. Each tuple is represented as 𝑢 = (𝜏, 𝑖𝑑, 𝑜𝑝),
where 𝑢 (𝜏) ∈ T is a timestamp that denotes when a transaction
committed the update [33] (i.e., system time), 𝑖𝑑 refers to the
unique identifier of a graph entity (node or relationship), and 𝑜𝑝
is the update operation performed. T is an ordered time domain
of discrete positive integer values. We assume that all updates
are ordered by their timestamps, which implies that no further
changes are allowed on past updates.

A graph entity 𝑔 can be added to a graph 𝐺 only if 𝑔 ∉ 𝐺 at
the time of insertion (relationships also require their 𝑠𝑟𝑐 and 𝑡𝑔𝑡
to exist). A graph entity 𝑔 can be deleted if 𝑔 ∈ 𝐺 during deletion.
Updating graph entities refers to inserting, deleting, or updating
properties and labels of existing graph entities. All graph updates
yield a new valid LPG.
Temporal LPG is defined as a pair 𝐺 = (𝑉𝜏 , 𝐸𝜏), in which every
node 𝑣 ∈ 𝑉𝜏 consists of a tuple 𝑣 = (𝜏𝑠 , 𝜏𝑒 , 𝑛𝑖𝑑, 𝑙, 𝑝) and every
relationship 𝑒 ∈ 𝐸 consists of a tuple 𝑒 = (𝜏𝑠 , 𝜏𝑒 , 𝑟𝑖𝑑, 𝑠𝑟𝑐, 𝑡𝑔𝑡, 𝑙, 𝑝).
The timestamps 𝜏𝑠 and 𝜏𝑒 represent the start time point (inclusive)
and end time point (exclusive) for which the graph entity 𝑔 is
valid, where 𝜏𝑠 (𝑔) < 𝜏𝑒 (𝑔). A graph entity insertion for 𝑔 sets
𝜏𝑒 (𝑔) = ∞, a deletion updates its former 𝜏𝑒 (𝑔) to a new value,
and a property/label modification is considered as a deletion
followed by an insertion. As a temporal LPG is created based on a
valid sequence of updates 𝑆 on a consistent graph, it follows the
graph update and LPG constraints. As an entity can be removed
and inserted at a later timestamp (once or multiple times), a
temporal LPG can include entities with the same identifier and
non-overlapping time intervals [𝜏𝑠 (𝑔), 𝜏𝑒 (𝑔)).

Given the temporal data model definition, we observe that
temporal graph analytic queries have two important dimensions:
(i) system (transaction) time; and (ii) graph size. With respect
to time, we must support queries over a single time point that
return a regular LPG or range queries over a time interval that re-
turn a temporal LPG. For graph size, we distinguish three access
patterns: (i) point queries of a single node or relationship; (ii) sub-
graph queries (e.g., n-hop neighbourhood); and (iii) global graph
queries. An example of a point query over the time dimension is
retrieving a node’s state at an arbitrary timestamp or its history
for a given time interval. Subgraph queries involve processing

USE GDB FOR SYSTEM_TIME BETWEEN t1 AND t2

MATCH (n: Node)

WHERE id(n) = $id

RETURN n

(a) History lookup between 𝑡1 and 𝑡2 (exclusive)

USE GDB FOR SYSTEM_TIME AS OF t1

MATCH (n) -[*hops]->(m)

WHERE id(n) = $id

RETURN m

(b) Neighbourhood lookup at 𝑡1
USE GDB FOR SYSTEM_TIME AS OF t1

MATCH (n: Node)

WHERE id(n) = $id

AND APPLICATION_TIME CONTAINED IN (t2, t3)

RETURN n

(c) Bitemporal node lookup at 𝑡1

Figure 1: Temporal Cypher extensions

such as computing the local clustering coefficient or the commu-
nity evolution over time. Finally, an example of a global query is
calculating the PageRank of a social network on a specific day or
daily over a month to extract temporal trends.
Temporal Cypher.Queries in the time dimension are performed
using the USE clause, an extension to the Cypher graph query
language [22]. We enable filtering by transaction time with the
keyword FOR SYSTEM_TIME – based on SQL:2011 [36] and com-
mercial implementations of temporal tables [66] – alongside an
interval specifier that defines the time interval for the query.
Thereby allowing the interval to be specified in a variety of ways
such as: (i) AS OF 𝑡𝑖 that returns a valid graph at 𝑡𝑖 ; (ii) FROM
𝑡𝑖 TO 𝑡 𝑗 that returns a temporal graph over the interval (𝑡𝑖 , 𝑡 𝑗);
(iii) BETWEEN 𝑡𝑖 AND 𝑡 𝑗 that returns a temporal graph over the
interval [𝑡𝑖 , 𝑡 𝑗); and (iv) CONTAINED IN (𝑡𝑖, 𝑡 𝑗) that returns a tem-
poral graph over the interval [𝑡𝑖 , 𝑡 𝑗]. Fig. 1a shows how a user can
retrieve a node’s history between 𝑡1 (inclusive) and 𝑡2 (exclusive),
while Fig. 1b shows how to retrieve the n-hop neighbourhood of
an arbitrary node at 𝑡1.
Bitemporal data model. To support bitemporal [26] LPGs, we
have created two additional graph properties: (i) application start
time to capture the creation of an event; and (ii) application end
time to capture the deletion of an event. For this work, we assume
the user manages the correctness of these properties, as arbitrary
future and past dates can be assigned to data. A constraint is that
the start time must be less than the end time for all graph entities.
Filtering by application time in Cypher is expressed by extending
the WHERE clause with a similar syntax as with system time. Fig. 1c
shows an example where a user retrieves a node at system time
𝑡1 with application time between [𝑡2, 𝑡3].

4 TEMPORAL GRAPH STORAGE
Having formalized the temporal graph query design space, we
next describe our storage system for persisting the history of
dynamic graphs. We find that selecting the optimal strategy
is highly workload- and graph-specific, leading to approaches
whose performance is optimal only in parts of this space (e.g.,
fine-grained storage for subgraph history retrieval). Therefore,
we have adopted a hybrid storage approach to support general-
purpose temporal analytics.

503

Table 1: Temporal graph API

Access type Definition in Java notation Description

Point Queries
List<Node> getNode(nodeId, start, end) Get node history between the given timestamps
List<Rel> getRelationship(relId, start, end) Get rel. history between the given timestamps
List<List<Rel> > getRelationships(nodeId, direction, start, end) Get a node’s (in/out) relationship history

Subgraph Queries List<List<Node> > expand(nodeId, direction, hops, start, end, step) Get a node’s n-hop history

Global Queries

List<Entity> getDiff(start, end) Retrieve the difference between two time instances
List<Graph> getGraph(start, end, step) Get the history of a graph between two timestamps
Graph getWindow(start, end) Filter graph history by a time window
TGraph geTemporalGraph(start, end) Create a temporal graph

Our idea is to combine and enhance the state-of-the-art storage
strategies: (i) TimeStore indexes graph updates by time to accel-
erate full graph reconstruction (i.e., snapshot-based approach);
(ii) LineageStore indexes updates by the unique ID of their graph
entity to enable fast subgraph history accesses (i.e., fine-grained
storage). Using these stores, we design a temporal graph system
called Aion that chooses between different strategies depending
on the prevailing workload. Our design decouples temporal stor-
age from the current working graph to simplify data access and
ownership while retaining performance for OLTP use cases.

We shall now introduce the graph API exposed by Aion to
enable querying the two dimensions of temporal graphs before
discussing its hybrid storage design.

4.1 Temporal Graph API
The goal of the temporal API (summarized in Table 1) is to pro-
vide the end-user with a simple and intuitive interface to interact
with the two dimensions of time-evolving graphs. We catego-
rize the queries in terms of graph accesses (first column). Point
queries return a node, a relationship, or the relationships of a
node based on a given direction (i.e., incoming, outgoing, or both).
Subgraph queries are supported using the expand method that
returns the neighbourhood of a node for n-hops given a specified
relationship direction. Finally, global queries return: (i) all graph
updates between two timestamps (getDiff), enabling efficient
incremental execution; (ii) LPG snapshots (getGraph); (iii) graph
windows (getWindow); or (iv) temporal LPGs (getTemporalGraph).

The temporal dimension of queries is captured using the start
and end transaction timestamp parameters in all methods 3. If
these two parameters are equal, the result of the method call
is a single graph entity or the snapshot of a (sub)graph. If end

is greater than start, the result of point queries is the history
of graph entities. For subgraph and global queries, the result is
a temporal graph. The latter queries, however, require the ad-
ditional step parameter, which specifies how many updates to
apply before materializing the subsequent result. For example,
getGraph(1993, 2023, 1-year) returns thirty more granular snap-
shots (one per year) instead of creating a new snapshot for every
single graph update applied in that time interval.

A user can extract temporal graphs with two distinct repre-
sentations: a temporal graph (TGraph) or a set of regular snap-
shots (List<Graph>) 4. There exist categories of algorithms that
work with either representation.

For example, Fig. 2 shows a simplified version of a tempo-
ral graph representing an aviation network [79], where nodes
(airports) and relationships (flights) are annotated with time in-
tervals. For example, the interval [0, 4) over node 4 denotes that
the airport was open to incoming flights until 𝑡 = 3, and the

3For brevity, we omit the application time parameters for bitemporal analytics.
4The snapshots can be computed eagerly or lazily depending on the application.

[29, 31)
04

2 3

1

[0, ∞)

[10, ∞)

[2, ∞)

[0, 4)

[0, 2)

[4, 8)

[10, 13)[5, 7)

[0, ∞)

latest-departure

earliest-arrival

Figure 2: Shortest paths between node 0 and node 1 using
temporal information

interval over a relationship depicts a flight departure and arrival
time. This representation supports the efficient execution of tem-
poral algorithms, such as describing temporal paths [79] as a
topological-optimum problem [29] using a single scan approach
instead of performing expensive joins across snapshots. The or-
ange relationships comprise the earliest-arrival path between the
airports 0 and 1, while the blue one is the latest-departure path.

On the other hand, the incremental graph algorithms discussed
in Sec. 2.3 operate on regular dynamic graphs. Therefore, we need
support for both representations for efficient temporal analytics.

Regarding graph windows (getWindow), we allow users to re-
trieve a graph snapshot based on a timestamp filter, that is, to
retrieve a consistent graph based on all present graph entities
between start and end. This includes the connections of these
present nodes that are valid at start (i.e., not deleted), even
though they are not part of the updates that occurred within the
interval. Graphwindows enable the extraction of trendswith time
locality while pruning inactive entities (e.g., e-commerce [38]
transactions of a specific week to capture Black Friday sales).

4.2 Modeling Updates Without Wasting Space
When indexing graph updates by time and entity IDs, we must
manage both the additional storage requirements and the runtime
overhead during data ingestion. In this section, we address the
storage issue and leave the discussion for the transactional over-
head for Sec. 5. Our target database for this work is Neo4j, which
uses fixed-size records to store nodes and relationships [61].
Fixed-size records allow constant time lookups based on offsets
into a file (by simply multiplying a record ID by its corresponding
record size). However, this is prohibitively expensive to replicate
in our design as it can introduce more than 2× storage overhead,
maintaining a full copy of the data for both stores.

We have addressed this issue by decoupling Neo4j’s general-
purpose graph storage format from our temporal storage format.
In the temporal graph case, we use variable-size records with
two different record types: (i) fully materialized graph entities
(e.g., a node with all its labels and properties); and (ii) deltas
from the last update (e.g., a property deletion). Fig. 3 shows the
three graph entities required to support the API from Table 1. A

504

Id Time Labels Props

Id Time Label PropsSrc Tgt

Type Del Diff

Id Time

Node

Header

Header

Header

Relationship

Neighbourhood Src Tgt

Figure 3: Graph entity storage layout

Table 2: Temporal storage using B+Trees

Store Entity Key Value

Time-
Store

graph update ts log offset
graph snapshot ts file path

Lineage-
Store

node nodeId, ts type, labels, props
relationship relId, ts type, label, props

out-neighbours srcId, tgtId, ts relId
in-neighbours tgtId, srcId, ts relId

neighbourhood entity stores the original relationship ID along
with the node IDs of its source and target, mapping it back to
the source data. For outgoing relationships, the source is stored
before the target, and for incoming relationships, the target is
stored first.

When storing temporal graph entities to disk, we reserve the
first byte (the header) for metadata regarding the entity type (i.e.,
node, relationship, or neighbourhood) and state (whether it is
deleted, represents a delta from a previous update, or neither).
To reduce space, all entities track only the transaction timestamp
when the insertion, deletion 5, or update occurred (i.e., start time).
The end time can be inferred by updates that follow. Instead of
storing the strings directly in disk records, we replace them with
a reference (4 bytes) to a string store, substantially lowering the
size of labels and properties. When storing labels, we first store
their number, followed by the actual label references. We reserve
the most significant bit of a label’s reference to denote whether it
is present or deleted. For properties, we follow a similar approach
and use the three most significant bits of a property’s reference
to store information about its state (e.g., deleted) and data type
(e.g., int, long, float, string, or primitive data array) to know how
to interpret the bytes that follow.

4.3 TimeStore: Indexing by Time
We now describe the design of TimeStore, an instance of snapshot-
based storage [34] that implements the API from Sec. 4.1. The
basic component of TimeStore is a log that contains all graph
changes (similar to a DBwrite-ahead logwith no retention policy).
The changes are ordered by monotonically increasing transaction
timestamps. Maintaining a single log for all updates simplifies the
design compared to previous solutions [34, 45] at the expense of
missed opportunities for storage reduction. The log may contain
either fully materialized entries or deltas using the storage format
discussed in Sec. 4.2.

To index the log entries and accelerate lookups based on time,
TimeStore uses a B+Tree, resulting in 𝑂 (log(𝑛)) accesses, where
𝑛 is the number of entries. Table 2 shows the key-value B+Tree
layout for each log entry: the timestamp of a graph update is

5Deleted entities require space only for their ID and timestamp of deletion.

Algorithm 1: Expand method for LineageStore at 𝑡
Input: A node 𝑖𝑑 , a rel. direction 𝑑 , a number of ℎ𝑜𝑝𝑠 , and a

timestamp 𝑡
Output: The result 𝑅 of node expansion

1 R← ∅
2 Q ← {𝑖𝑑 } ⊲ queue for expansion

3 for ℎ𝑜𝑝 ← 1, . . . , hops do
4 S ← ∅ ⊲ set for visited nodes in current hop

5 qsize← |Q |
6 for i← 1, . . . , qsize do
7 cid ← Q.poll () ⊲ current id

8 rels← getRelationships (cid, d, t, t)
9 for r ∈ rels do
10 if r ∉ S then
11 nId ← r .getNeighbourId () ⊲ get neighbour id

12 R← R ∪ {getNode (nId, t, t), ℎ𝑜𝑝 } ⊲ set hop

13 S ← S ∪ nId
14 Q ← Q ∪ nId

the key, and the offset to the log is the value. Nonetheless, graph
reconstruction from the beginning of time can be costly, and so
TimeStore also eagerly creates snapshots based on a user-defined
policy such that workload-specific expertise can be injected into
the system. The policy can be time-based or operation-based
(the number of updates), with the default being operation-based.
These snapshots are stored on disk, and references to the files
are maintained in a second B+Tree indexed by time. To avoid the
I/O cost of reading graph snapshots from disk where possible,
we introduce an in-memory Least Recently Used (LRU) cache for
snapshots called GraphStore.

To retrieve a graph on an arbitrary timestamp, TimeStore
fetches the snapshot (from disk or GraphStore) with the clos-
est timestamp and then applies the forward graph changes to
reach the correct state. For multiple consecutive snapshots or
a temporal graph creation, it uses the getDiff operation to per-
form a range scan over the log. Point or subgraph queries require
the creation of a snapshot, followed by reading, filtering, and
applying all valid updates from the log. This is an expensive op-
eration with graph retrieval outweighing both subgraph access
and traversal costs, as we show in Sec. 6.3.

4.4 LineageStore: Indexing by Entity History
With TimeStore supporting fast global analytics, we now focus
on the second class of queries that access small parts of the
graph, including those that comprise a small number of hops.
LineageStore enables fast history access of graph entities at a
node-, relationship-, and neighbourhood-level to node labels and
properties using the four B+Tree indexes shown in Table 2. The
entries stored in LineageStore use a similar layout as in Fig. 3,
but their attributes are rearranged to enable temporal ordering
when stored as key-value pairs. The keys are composite and are
ordered first by entity identifiers, node IDs or source and target
IDs for relationships, and then by timestamp.

Instead of storing logical pointers to the log entries of Time-
Store, we chose to store graph updates in place either as deltas
or fully materialized entities. This is encoded as type in the en-
try’s value and has the effect of increasing locality for graph
accesses. Specifically, using B+Tree range scans, entity history
can be retrieved with 𝑂 (𝑙𝑜𝑔(𝑛)) time complexity, as all updates
are ordered by timestamp in the same or adjacent B+Tree pages.

505

For example, to retrieve the complete history of a node start-
ing from a timestamp 𝑡 , we perform a nodes.seek(low, high)

range scan, where low = {nodeId, t} and high = {nodeId, ∞}.
In Sec. 6.5, we discuss how to select a materialization strategy
that accounts for the reconstruction cost of a graph from deltas.

While updating node history is straightforward, relationship
updates are more complicated: relationship creation or deletion
also requires updating in- and out-neighbours indexes. As an
alternative design, particularly for densely connected nodes, we
experimented with a pointer-based representation, creating a
double-linked list of relationships by storing logical pointers
within a relationship [61]. However, that design significantly
increased the storage requirements and the complexity of rela-
tionship updates compared to maintaining two separate neigh-
bourhood indexes and was not chosen for our implementation.

Point and subgraph queries are translated directly to index
lookups. Alg. 1 shows the implementation of the expand method
for a single time point t, where we assume that start is equal to
end for simplicity. In line 8, LineageStore retrieves the relation-
ships of nodes with direction d at timestamp t by performing a
range scan over the in- and out-neighbours indexes followed by a
range scan over the relationship index to reconstruct the correct
entity versions. Then, in line 12, if the neighbour (either source
or target node ID depending on the direction d) has not been
visited for that hop, it is added to the final result R. Global queries
require an all-nodes scan with one-hop expansions. Therefore,
their processing cost depends solely on the graph history size.

4.5 Handling Application Time
To accelerate lookups for the application time dimension, Aion
can use the hybrid store as with the system time. However, this
significantly penalizes ingestion cost as it requires updating mul-
tiple indexes, increases query complexity since it produces mul-
tiple execution plans, and adds storage overhead. Furthermore,
as application time is user-defined, data may arrive out-of-order,
requiring a watermark strategy [2] to guarantee when data is
safe to read. Therefore, we decided to store application start and
end time as graph properties. When querying with both time
dimensions, a valid (sub)graph with respect to system time is
retrieved first, and then a filter is applied for the application time.
If the application time is not set as a property, we fall back to
using the system time.

5 AION ARCHITECTURE
While hybrid temporal storage can provide efficient graph ac-
cesses, a temporal graphDBMSmust: (i) adapt its execution strate-
gies to be sympathetic to the workload characteristics; (ii) store
temporal information with low overhead for write transactions;
and (iii) limit redundancy-prone computations of temporal range
queries. We describe the architecture of Aion, a graph system
based on the hybrid storage from Sec. 4 that extends Neo4j to pro-
vide transactional guarantees for time-evolving queries. Backing
Aion’s storage with Neo4j’s B+Tree implementation [53] offers
sortedness, scalable accesses, out-of-core storage, and seamless
integration with the page cache for increased performance.

In this section, we provide an overview of Aion’s architec-
ture (Sec. 5.1) and introduce an efficient in-memory LPG rep-
resentation that enables incremental graph execution (Sec. 5.2).
Lastly, we describe how Aion manages its own memory to avoid
unnecessary managed language overheads (Sec. 5.3) from the
underlying runtime.

Graph updates

TXN

Neo4j

Aion

Temporal Cypher Temporal Procs

GraphStore

LineageStore TimeStore

CLI

ClientTemporal
queries

Index changes

1

2

3

Figure 4: Aion architecture

5.1 Overview
Fig. 4 shows how Aion augments Neo4j with a hybrid store that
consists of three separate indexable components: (i) the Graph-
Store that maintains a set of (temporal) graph snapshots based
on LRU policy; (ii) the TimeStore that serves global queries; and
(iii) the LineageStore that serves point and small subgraph queries.
By storing temporal updates separately from Neo4j’s data, Aion
allows OLTP query execution over the latest graph version with
no overhead in the common use case. To avoid adding the over-
heads for updating all three stores on the critical path of each
write transaction, Aion only applies updates to the TimeStore,
which, in turn, cascades them to both the GraphStore and Lin-
eageStore in the background.

Graph updates are passed to Aion from Neo4j via an event
listener that is registered with the Neo4j database management
service. The event listener is triggered in the after-commit phase
of each write transaction at stage 1 . Each event provides Aion
with access to all changes that are to be applied by the transaction
and guarantees that: (i) updates are assigned a valid transaction
time; and (ii) the constraints of Sec. 3 are satisfied, as committed
transactions always result in a consistent labeled property graph.
In the event that the transaction aborts, any changes can be rolled
back and the transaction retried.

Stage 2 is responsible for writing all changes to Aion’s hy-
brid temporal store as part of running transactions. Since index-
ing graph updates by both time and entity IDs leads to perfor-
mance overheads for write transactions (see Sec. 6.4), this stage
is designed to provide low-latency transactional guarantees for
temporal queries by employing a two-step process. First, only
the TimeStore is updated synchronously; then, background work-
ers asynchronously apply outstanding updates to the LineageStore
and, if necessary, insert new snapshots into the GraphStore. Con-
sequently, the LineageStore lags behind the TimeStore, and in the
rare case that it cannot serve a temporal query, the TimeStore is
used instead, which may incur a performance penalty. 6 Finally,
recovering from failures is handled by replaying the transaction
log from the last persisted transaction time to get a consistent
state. As such, Aion maintains fault tolerance (in a single ma-
chine or cluster).

To access historical data, users submit their queries using
temporal Cypher or procedures in stage 3 , executed as part
of a transaction. Temporal Cypher is parsed using javaCC [32]
and translated into an operator plan. Based on the cardinality

6We analyze the performance of the two stores in Sec. 6.2 and Sec. 6.3.

506

estimation of this generated plan, Aion adopts a simple heuristic
to select between the two temporal stores: 7 (i) if less than 30% of
the graph is accessed, Aion uses the LineageStore; (ii) otherwise,
it constructs a full graph snapshot with the TimeStore.
Cardinality estimation. Aion uses histograms to track base
statistics, including the number of: (i) nodes and relationships;
(ii) nodes with a specific label; (ii) relationships with a specific
type; (iv) relationships with a predefined pattern (e.g., (:Label)-
[:Type]->()). Using these base statistics, it can derive the car-
dinality of more complex patterns, such as #((:A)-[:R]->(:B))
= min(#((:A)-[:R]->()), #(()-[:R]->(:B))), and estimate the
percentage of the graph history accessed.
Snapshot replication.One option for storing snapshots for Time-
Store was to utilize Neo4j’s functionality of persisting full graph
snapshots or deltas since a past graph version [56]. Yet, this in-
volves long-running read transactions to access graph entities
and copies metadata (e.g., indexes) not required for temporal
analytics, which is overbearing for small write transactions, in-
curring up to seconds of increased latency. To avoid the problem,
we maintain the latest graph in-memory using the GraphStore,
similar to an HTAP approach [65] by synchronously applying all
committed graph updates. This allows faster snapshot replication
to memory and disk storage without expensive read transactions.
Graph analytics using temporal procedures. Aion wraps the
functionality exposed in Table 1 with temporal procedures (i.e.,
functions invoked from Cypher). It also allows the creation of
static CSRs, known as graph projections, to be able to exploit the
efficient parallel versions of the GDS library’s algorithms [57].
Additionally, Aion supports the execution of algorithms directly
on in-memory snapshots. This latter approach can be efficient for
large graphs, as it does not involve the step of graph projection.
Furthermore, executing algorithms on in-memory snapshots pro-
vides the basis for incremental computation, as discussed in the
following section.
General applicability. We designed Aion as a standalone tem-
poral management solution that can be integrated into other
graph DBMSs by installing Aion’s event handlers 8 in the DBMS,
and exposing the temporal API to their users via the query lan-
guage or UDFs. For any system that cannot integrate this way,
Aion is implemented from a set of four standard Neo4j com-
ponents: (i) Neo4j’s B+Tree implementation for storage; (ii) the
event listeners for the integration with the transaction layer;
(iii) Cypher for its frontend; (iv) GDS projections for static graph
analytics. Hence, an implementer can switch out each compo-
nent for readily available versions in their system. For example,
B+Trees can be replaced by any persistent key-value store that
allows composite key ordering, out-of-core storage, and range
scans, such as RocksDB or other Log-Structured-Merge stores.

Although our current implementation extends Cypher (see
Sec. 3), other query languages are easily integrated by exposing
the temporal API calls from Table 1. For instance, in an imperative
language, such as Gremlin, we could provide extensions similar
to previous work [10] and map the Gremlin steps to our API.
Finally, by extracting the graph history into GDS projections,
Aion creates static CSRs backed by byte arrays or Apache Arrow
format that can be used by other libraries or many-core GPGPUs.

7As futurework, wewant to develop an adaptive decisionmodel for graphworkloads
with different characteristics.
8Event listeners are considered a commonplace pattern to intercept the lifecycle of
transactions and adapt their behavior in application frameworks, such as Spring, or
commercial databases, such as Oracle or Memgraph [47].

Rel_ID Rel_ID

Node Rel Rel_ID Rel_ID

Node vector Relationship vector In- & out-neighbourhood

Vector-based adj. listMaterialized graph entities

Figure 5: In-memory data structures

5.2 Incremental Graph Computations
We next discuss how Aion enables efficient incremental graph
computations, starting with its in-memory dynamic graph repre-
sentation. Static CSR representations can not handle dynamically
changing LPGs since not all nodes have the same number of
properties or property data types. In addition, while previous
work [72] shows that on-the-fly static CSR creation is feasible
for analytical engines, the overhead for OLTP systems is signifi-
cant, especially so for large graphs, as it requires locking at node
and relationship granularity. Therefore, we adopt an adjacency
list-like design for our dynamic representation.
The in-memory graph consists of four data structures shown
in Fig. 5: (i) a vector of materialized nodes (each containing all
labels and properties); (ii) a vector of materialized relationships;
(iii) a vector of the incoming relationship IDs for each node; and
(iv) a vector of the outgoing relationship IDs for each node. Our
design is based on the Sortledton [23] graph data structure but
can handle an arbitrary number of labels and properties using the
materialized graph entities’ vectors. The four vectors provide a
compact memory representation with fast operations: 𝑂 (1) time
for entity insertion or update, and neighbourhood access. Only
node and relationship deletions can bemore expensive depending
on the updated neighbourhood size, which we can amortize using
gaps [19]. For parallelization, no read-write locks are required, as
updates are performed using key partitioning (e.g., by node ID)
and reads always precede writes for analytics. In addition, the
data structures are resized according to the maximum node ID
seen from the updates during key partitioning without locking
to avoid heavy performance penalties.

To compact sparse graphs into a denser format, Aion uses a
map to translate from a sparse domain of node IDs [0,𝑉𝑠), where
only a subset of IDs refer to a valid node, to a dense domain
[0,𝑉𝑑), where all IDs refer to valid nodes. This dense format
enables efficient graph algorithms designed to store and retrieve
data from vectors.

Despite this compact in-memory representation, storing mul-
tiple graph snapshots in GraphStore is still challenging from an
implementation perspective. Neo4j maintains a page cache over
persisted data (e.g., B+Tree pages, metadata, or entities partic-
ipating in transactions), which limits the amount of available
memory allocated for GraphStore. To further lower the storage
requirements of in-memory graphs, we utilize the following op-
timizations: (i) GraphStore’s snapshots do not store their neigh-
bourhoods in the respective vectors. Instead, they are computed
on the fly with parallel construction when a snapshot is retrieved;
(ii) when copying large graphs from the GraphStore, Aion uses
Copy-on-Write (CoW) similar to Tegra [31] to avoid unnecessary
data duplication; and (iii) in- and out-neighbourhood vectors do

507

not store the source and target node IDs and an 𝑂 (1) lookup is
required from the relationship vector to retrieve them.

While the dynamic representation above is sufficient for LPG
storage, to store temporal graphs, we perform the following
changes: (i) the node and relationship vectors store a list of entity
versions instead of a single object; (ii) in- and out-neighbourhood
vectors store all neighbourhood history for each entity. Every
graph modification is modeled as a record append at the end of
the respective adjacency lists. Thus, data is ordered by timestamp,
allowing logarithmic-cost history access.
Incremental algorithms. Based on this graph representation,
incremental algorithms are implemented as temporal procedures
that materialize intermediate results and call the getDiffmethod
between iterations. Aion reuses the intermediate results to avoid
redundant operations when analyzing consecutive snapshots.
The intermediate and final results can be stored in GraphStore for
efficient access by subsequent queries [31]. Similar to the global
queries, incremental algorithms require the step parameter to
produce results for a batch of data and not every update.

Aion supports three categories of incremental algorithms:
(i) non-holistic aggregations [70] such as the average value of a
node or relationship property; (ii) monotonic path-based algo-
rithms like Breadth-First Search (BFS) or Single-Source Shortest
Path (SSSP); and (iii) non-monotonic algorithms that can con-
verge to correct results independently of node initialization such
as PageRank or Graph Coloring. For aggregations, we employ
techniques from stream processing [71, 74] for efficient execution.
Path-based and non-monotonic algorithms require more expen-
sive dependency tracking, especially in the event of deletions.
More specifically, for the monotonic path-based algorithms, we
use the tag and reset technique [78], where deleted nodes are
tagged, and their value is reset before propagating the tags to the
remaining graph. For the last category of graph algorithms, we
use the optimizations introduced in [77] and propagate changes
based on dependencies between iterations.

5.3 Memory Management
Production-scale DBMSs introduce systemic overheads that in-
crease the memory footprint and CPU cycles of database opera-
tions. In addition, systems implemented in managed languages
(e.g., Java for Neo4j) can suffer from dynamic allocation and
garbage collection penalties, which rapidly multiply with the
systemic overheads (e.g., transactional or networking stack). To
reduce the performance degradation of the memory-intensive
incremental graph queries, Aion minimizes memory allocation
on the critical path. It utilizes statically allocated object pools,
such as byte arrays for disk operations or roaring bitmaps [14]
for algorithms. In addition, each worker thread maintains a sepa-
rate object pool to avoid contention. To further lower the mem-
ory footprint, Aion utilizes primitive collections [18] and re-
places: (i) queues with circular buffers of pre-allocated objects,
and (ii) maps with custom array implementations.

6 EVALUATION
In this section, we evaluate the performance and footprint of
Aion when processing temporal queries. We demonstrate that
Aion achieves comparable or better performance compared to
state-of-the-art temporal analytics engines like Raphtory and
Gradoop (Sec. 6.2) and the Enterprise Edition of Neo4j, a general-
purpose non-temporal graph database. We then study the per-
formance (Sec. 6.3) and overheads (Sec. 6.4) of hybrid storage

before presenting a materialization strategy of deltas to reduce
the cost for history reconstruction (Sec. 6.5). Finally, we show the
performance of incremental algorithms (Sec. 6.6) with Aion and
provide an end-to-end system evaluation by submitting Cypher
queries over Bolt (Sec. 6.7), as an end-user or client application
would use Aion.

6.1 Experimental Setup
All experiments are performed on an m5.8xlarge AWS EC2 in-
stance with 32 physical cores, a 35.8 MiB LLC, 128 GiB of memory,
and EBS [4] for storage (500 MB/s write bandwidth; 8k IOPS).
We use Amazon Linux 2023 with kernel version 6.1, Corretto
OpenJDK17, and rustc 1.72.0.
Datasets. For our evaluation, we use six real-world graph work-
loads to provide diverse scenarios for rich coverage: (i) DBLP [82]
is an undirected co-authorship network, in which we replace re-
lationships (𝑠, 𝑡) with two directed ones, i.e., 𝑠 → 𝑡 and 𝑡 → 𝑠;
(ii) WikiTalk [40] is a temporal network that captures the edits in
Talk pages between Wikipedia users; (iii) Pokec [69] is an online
social network; (iv) LiveJournal [7] represents an online commu-
nity of users maintaining journals and blogs; (v) DBPedia [6] is
the hyperlink network of Wikipedia with pages as nodes and
hyperlinks as relationships; and (vi) Orkut [48] is another social
network, in which we also replace undirected relationships with
two directed ones as with DBLP. Apart from the WikiTalk graph,
all other datasets are non-temporal, and so we have enriched their
nodes and relationships with timestamps. To achieve this fairly,
we load and shuffle all relationships, assign them monotonically
increasing timestamps, and consume them in timestamp order
to emulate relationship additions over time, where node creation
always precedes the creation of any incident relationships.

Table 3 summarizes the graphs with their properties (including
the number of nodes or relationships and the average degree) and
their in-memory size in Neo4j and Aion. For Neo4j, the size is
measured as in [54] with additional bytes for JVM object headers
and without accounting for indexes or other metadata stored
on disk. For Aion, we use around 60 B and 68 B for nodes and
relationships, respectively, and 4 B for each entry stored in the
in- and out-neighbourhood vectors (see Fig. 5).
Graph database systems.We compare to (i) Raphtory (v0.5.6)
[59], which supports efficient fine-grained accesses; (ii) Gradoop
(v0.6.0) [62], a model-based temporal engine for distributed an-
alytics that uses Flink [12]; and (iii) Neo4j Enterprise Edition
(v5.7.0), a system without temporal capabilities. 9 For global
queries, we use the TimeStore implementation, which is a through-
put-optimized variation of the Copy-Log approach exhibiting
the best performance from existing snapshot-based techniques
at the expense of additional space overhead (as shown in recent
work [45]). Regarding the memory configuration of Aion, we
reserve 32 GB for the JVM heap for object allocation, 40 GB for
Neo4j’s page cache, and 32 GB for the GraphStore. The remaining
memory is reserved for OS operations and the client threads
interacting with the database.

6.2 System Comparison for Graph Accesses
To study the efficiency of temporal storage and retrieval, we
use the six graphs from Table 3 and measure the throughput of:
(i) point queries that retrieve random relationships at arbitrary

9The code for other storage approaches [27, 31, 34, 45, 76] was not available at the
time of writing.

508

Table 3: Evaluation Datasets

Dataset Domain |V| |E| |E|/|V| Directed Neo4j (in-memory) Aion (in-memory)

DBLP [82] citation 0.3 M 2.1M 7 ✗ 180 MB 175 MB
WikiTalk [40] communication 1M 7.8M 7.8 ✓ 667 MB 650 MB
Pokec [69] social 1.6 M 30M 18.8 ✓ 2436 MB 2338 MB
LiveJournal [7] social 4.8M 69 M 14.4 ✓ 5520 MB 5314 MB
DBPedia [6] hyperlink 18M 172 M 9.5 ✓ 14251 MB 13803 MB
Orkut [48] social 3M 234 M 78 ✗ 18068 MB 17209 MB

DBLP WikiTalk Pokec LiveJournal DBpedia ORKUT
0

1

2

3

4

Th
ro

ug
hp

ut
 (1

05 o
ps

/s
)

Aion
Raphtory

Figure 6: Fetching random relationships

DBLP WikiTalk Pokec LiveJournal DBpedia ORKUT

100

101

102

103

Ru
nt

im
e

(s
)

Aion
Raphtory
Gradoop

Figure 7: Fetching random snapshots

DBLP(
1)

DBLP(
2)

DBLP(
4)

DBLP(
8)

WikiT
alk

(1)

WikiT
alk

(2)

WikiT
alk

(4)

WikiT
alk

(8)

Pok
ec(

1)

Pok
ec(

2)

Pok
ec(

4)

Pok
ec(

8)

Liv
eJo

urn
al(

1)

Liv
eJo

urn
al(

2)

Liv
eJo

urn
al(

4)

Liv
eJo

urn
al(

8)

Dataset(#hops)

10−2

10−1

100

101

102

103

104

105

106

Th
ro

ug
hp

ut
 (o

ps
/s

)

Raphtory LineageStore TimeStore

Figure 8: N-hop graph accesses

time points; 10 and (ii) global queries that fetch full graph snap-
shots at random timestamps. For the point query workload, we
compare Aion against Raphtory and omit the results of Gradoop,
as they are orders of magnitude worse for single-entity lookups.
Given that Raphtory cannot support multigraphs (graphs that
permit multiple relationships between the same source and tar-
get nodes, it loads only 42% and 79% of the relationships for
WikiTalk and DBPedia datasets. This results in smaller over-
head when performing an all-history scan for global queries
and incorrect output for these graphs. Even though Raphtory
supports a more restrictive graph model with a sole focus on
in-memory analytics, it provides an upper-performance bound
for Aion. For global queries, we compare against both Raphtory
and Gradoop. We average the results obtained from all systems
over 1 M runs for point queries and 100 runs for global queries.
Point queries. Fig. 6 shows the throughput of point queries/ s, for
which Raphtory is optimized. Specifically, Raphtory retrieves re-
lationships by performing constant time lookups over in-memory
arrays and filtering them by timestamp, while Aion retrieves
graph entities from page-backed B+Trees with logarithmic com-
plexity. We observe that for small graphs, such as DBLP and Wik-
iTalk (only 3 M relationships loaded), Raphtory exhibits around
30% better throughput because large parts of the graph are re-
trieved from the last-level cache with fewer CPU cycles compared
to using B+Tree reads over the page cache (data fits in memory).

For larger graphs, the performance difference drops below
7% because of the expensive checks that Raphtory performs to
validate whether graph entities are visible at a specific timestamp.
This includes scanning all incoming and outgoing relationships
for each node, which is costly for nodes with a long history of
updates. On the other hand, Aion scales well with the dataset
size by accessing only the relevant graph history segments based
on its efficient memory management and storage design. Given

10As retrieving random nodes at arbitrary time points is a symmetrical operation
and the number of nodes in the datasets from Table 3 is relatively smaller than the
number of relationships, we omit the results for node retrieval.

that typical graphs have more than 100 M entities from our expe-
rience with Neo4j deployments, we consider Aion’s performance
comparable to Raphtory for point queries.
Global queries. The runtime measurements of Fig. 7 show that
Aion outperforms Rapthory and Gradoop for global queries. In
particular, for DBLP, WikiTalk, Pokec, and LiveJournal, Aion
yields 7.3×, 4.5×, 3.5×, and 3× better throughput compared to
Rapthory, respectively. For these datasets, Aion retrieves a snap-
shot from the GraphStore using CoW and loads only a small
amount for graph updates from the log stored on disk. On the
other hand, Raphtory performs an all-history scan followed by
an expensive filter to construct a global snapshot (i.e., checking
the history of relationship updates per node).

For the larger graphs (DBPedia and Orkut), Aion yields only
30-50% better performance as the GraphStore cannot cache mul-
tiple snapshots because of the dataset sizes shown in Table 3.
By retrieving snapshots at random time points, Aion regularly
evicts and loads new snapshots to the GraphStore from disk while
replaying updates using the TimeStore’s log. In our current im-
plementation, the data stored in the log is not buffered in mem-
ory and instead is read from disk. In addition, snapshots are
reconstructed serially to avoid inconsistencies (e.g., a deletion
happening before an addition).11

Compared to Gradoop, which parallelizes snapshot retrieval
to all available cores, Aion achieves 6.6-52.2× lower runtime.
To construct a snapshot, Gradoop performs a parallel scan and
filter over the node and relationship tables (backed by CSV files),
followed by two parallel join transformations required to remove
dangling relationships from the produced subgraph. Gradoop
spends nearly 80% of its time on this last verification step. Despite
model-based approaches being embarrassingly parallel, perform-
ing an all-history scan along with complex logic to verify the
result makes them prohibitively expensive, especially for low-
latency (transactional) workloads.
Discussion. In Table 4, we summarize the space and time com-
plexities of Aion, Raphtory, and Gradoop to provide a more
11We want to investigate parallel log replay [80] to accelerate the process in the
future.

509

DBLP WikiTalk Pokec LiveJournal
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
th

ro
ug

hp
ut

TS+LS LineageStore TimeStore

Figure 9: Ingestion overhead

DBLP WikiTalk Pokec LiveJournal
0

1

2

3

4

5

6

7

St
or

ag
e

re
qu

ire
m

en
ts

 (1
04 M

B)

Neo4j
TimeStore
LineageStore

Figure 10: Temporal storage overhead

32 16 8 4 2 1
History length of deltas

0

2

4

6

8

10

12

14

Th
ro

ug
hp

ut
 (1

04 o
ps

/s
)

1.0

1.2

1.4

1.6

1.8

No
rm

al
ize

d
st

or
ag

e
ov

er
he

ad

Figure 11: Materialization strategy

AVG(10) AVG(100) BFS(10) BFS(100) PR(10) PR(100)
Algorithm(#snapshots)

0

10

20

30

40

50

60

Sp
ee

du
p

DBLP
WikiTalk
Pokec
LiveJournal

Figure 12: Incremental execution

DBLP WikiTalk Pokec LiveJournal
0

10

20

30

40

50

Th
ro

ug
hp

ut
 (1

03 o
ps

/s
)

Read-only
Read-write (10% writes)
Read-write (20% writes)

Figure 13: Transactions using Bolt

AVG(10) AVG(100) BFS(10) BFS(100) PR(10) PR(100)
Algorithm(#snapshots)

0

10

20

30

40

50

60

Sp
ee

du
p

DBLP
WikiTalk
Pokec
LiveJournal

Figure 14: Speedup with procedures

Table 4: Storage and retrieval costs of graph database sys-
tems. |𝑈 | = number of graph updates; |𝑈𝑅 | = number of
relationship updates; |𝑈𝑛

𝑅
| = number of relationship up-

dates for node 𝑛; |𝐺 | = size of a graph snapshot; 𝑘 = number
of snapshots; 𝛿 (|𝑈 |) = range scan over updates, with 𝑙𝑜𝑔(|𝑈 |)
lookup cost and |𝐿 | updates replayed (|𝐿 | <= |𝑈 |).

System Space Rel. retrieval Snapshot retrieval Persistent

Aion 2|𝑈 | + 𝑘 |𝐺 | 𝑙𝑜𝑔(|𝑈𝑅 |) |𝐺 | + 𝛿 (|𝑈 |) ✓

Raphtory |𝑈 | 2|𝑈𝑛
𝑅
| |𝑈 | ✗

Gradoop |𝑈 | |𝑈𝑅 | |𝑈 | ✗

detailed analysis of the performance results presented above. In
terms of space requirements, both Raphtory and Gradoop store
the graph updates |𝑈 | once in memory. Aion stores the graph
updates twice (i.e., in LineageStore and TimeStore) along with an
arbitrary number of 𝑘 snapshots for TimeStore. Its data structures
are persistent and enable the support of out-of-core use cases
and failure recovery out-of-the-box.

For relationship point queries 12: (i) Gradoop has to scan all
the relationship updates (|𝑈𝑅 |); (ii) Raphtory checks whether the
start and end nodes are visible at a given time by linearly scan-
ning their relationship updates from vectors (|𝑈𝑛

𝑅
|); and (iii)Aion

performs a B+Tree lookup over all updates in 𝑙𝑜𝑔(|𝑈𝑅 |) using
the LineageStore. This explains why Gradoop cannot handle effi-
ciently point queries, and the performance of Raphtory degrades
with the size of the graph history. For global queries, both Raph-
tory and Gradoop must scan all the updates. Instead, with Time-
Store, Aion has to copy the most relevant snapshot (|𝐺 |) from
in-memory or disk, search the offsets of the remaining updates
in 𝑙𝑜𝑔(|𝑈 |) using a B+Tree, and then load and replay them from
disk. Overall, we observe that Aion achieves good performance

12The time complexity for node retrieval is symmetrical.

for both point lookups and global graph accesses at the expense
of employing additional storage space.

6.3 Comparing Temporal Stores
Next, we explore the throughput of TimeStore and LineageStore in
subgraph queries to identify a threshold for choosing between the
two implementations when Aion generates a physical execution
plan. We also compare against Raphtory to observe the limita-
tions of another fine-grained storage approach, apart from Lin-
eageStore, for large subgraph queries. We average the results
obtained from all solutions over 100 runs of n-hop queries that
start from randomnodes (see Alg. 1 for LineageStore). The number
of hops ranges from one to eight.

Fig. 8 shows that for one- and two-hop queries, LineageStore
and Raphtory achieve between two and three orders of magnitude
better performance compared to TimeStore. In addition, Raphtory
outperforms LineageStore for one-hop queries by 11×, 1.2×, and
1.8× for DBLP, Pokec, and Livejournal, while being 14× slower for
WikiTalk. Still, with additional hops, its performance becomes
comparable or worse than LineageStore because of accessing
larger parts of the graphs and performing expensive checks for
time validity, as discussed in Sec. 6.2.

For four hops, if the n-hop query accesses more than 30%
of the graph, TimeStore yields comparable performance against
LineageStore and Raphtory. Otherwise, it is one order of mag-
nitude slower. This happens because TimeStore materializes a
full graph snapshot while accessing only a subgraph, and the
materialization cost outweighs the traversal cost.

When we double the hops from four to eight, every node is
accessed on average 9× for DBLP, Pokec, and LiveJournal, and
2× for WikiTalk. For this workload, LineageStore and Raphtory
are up to 12× and 5× slower or time out (i.e., requires more than
five hours to complete for Pokec and LiveJournal). To allow Aion
to handle subgraph queries efficiently and avoid such situations,

510

we adjusted the query planner to choose an execution strategy
based on the estimated cardinality: Aion chooses LineageStore
if the cardinality is less than 30% of the graph, and TimeStore
otherwise.13 As a result, Aion can adapt its execution to the
workload characteristics of different temporal queries.

6.4 Data Ingestion and Storage Overhead
In this experiment, we evaluate the overhead of the hybrid store
when the temporal infrastructure is integrated with the transac-
tion processing flow of the host Neo4j database. To normalize
the runtime overhead measurement, we compute the through-
put of Neo4j without temporal storage and use it as a baseline
for the cost introduced by the temporal stores. Following the
best practices for write transactions [51], we batch updates to-
gether to increase performance in batches of 1000 transactions
and perform inserts with 32 client threads.

In Fig. 9, we show the normalized throughput when syn-
chronously updating the temporal store with each write trans-
action. As all approaches perform worse than the baseline, the
solutions with lower overhead are closer to one. We compare
the following approaches: (i) updating both stores (i.e., TS + LS);
(ii) updating only LineageStore; and (iii) updating only TimeStore.
When using both stores, we observe a 40% ingestion throughput
decrease caused by the LineageStore. Its indexes (see Table 2) are
more expensive to update because of the composite key compar-
isons, especially for B+Trees with multiple levels. In addition,
materializing graph deltas (see Sec. 6.5) decreases the ingestion
throughput, as Aion must lock the entire B+Tree to guarantee
safe access to a key range. Instead, if Aion uses only TimeStore,
the throughput is lowered by less than 15%, even though all
writes are serialized to disk with the log. Therefore, to provide
continued OLTP execution at the prevailing work rate, Aion
updates synchronously the TimeStore and off the critical path
the LineageStore, as discussed in Sec. 5.1. This allows Aion to use
the appropriate store based on the workload characteristics at
runtime (see Table 4).

Fig. 10 shows the storage overhead introduced by the hybrid
store. Apart from the space required to store the graph data on
disk (see the Neo4j column in Table 3), Neo4j requires additional
space to store indexes (e.g., accessing entities by label), graph
metadata, and transaction logs, retained for recovery purposes.
In particular, Neo4j uses 6-9×more space than the original graph
size, with the highest fragment of the storage cost attributed to
the transaction logs. Compared to the total storage cost of Neo4j
(reported with the blue bar), Aion increases the disk footprint
between 29-41% for all datasets, with one-quarter of that over-
head attributed to serialized graph snapshots. This experiment
confirms the benefits of using variable-size records and deltas
in Aion, which incur a modest storage overhead independent
of the additional 2× data redundancy. In future, an approach to
further reduce this overhead would be to compress data based
on its characteristics (e.g., value distribution).

6.5 Materializing Graph Entities
In the previous experiments, we assumed a single version for each
node and relationship as we performed only additions without
updates or deletions. Next, we want to evaluate a strategy for
choosing how many deltas we need to store before materializing
entities. As discussed in Sec. 4.4, deltas significantly reduce the

13See Table 4 for the time complexity of retrieving individual relationships (Lin-
eageStore) and graph snapshots (TimeStore).

storage requirements of LineageStore. Meanwhile, they increase
the cost of reconstructing a valid entity version (e.g., a node with
its latest properties and labels) because LineageStore has to read
and merge more B+Tree entries.

In Fig. 11, we use the DBLP graph and create history chains
for its relationships by adding thirty-two new properties into
the graph at different discrete times. We then materialize the
relationships for every update (equivalent to a chain threshold of
one), followed by every two, four, eight, and sixteen updates. No
materialization (thirty-two implies we only maintain deltas with-
out materialization) results in up to 40% lower throughput, which
deteriorates with the increasing number of deltas. Conversely,
materializing entities on every update increases storage up to
80% (see the black line in Fig. 11). However, the large key-value
pairs created from the repeated materialization result in more
page reads (i.e., fewer pairs fit in a single B+Tree page), affecting
performance adversely. Finally, we observe that materializing
deltas every four updates appears to strike the best balance for
this workload with only 16% storage increase, and we, thus, adopt
this materialization strategy for Aion.

6.6 Incremental Query Execution
In Fig. 12, we measure the speedup of incremental graph compu-
tations over regular execution for either ten or hundred consecu-
tive snapshots. We use DBLP, WikiTalk, Pokec, and LiveJournal
datasets to vary the number of graph entities (i.e., from 2.4 M to
73.8 M) and the average degree of the graph. More specifically, for
each graph, we load half of the relationships to the first snapshot,
divide the remaining ones into a hundred increments, and apply
one batch at a time to create the subsequent snapshots. We eval-
uate three classes of algorithms: (i) running global average (AVG)
over a relationship property; (ii) Breadth-First Search (BFS) using
random nodes as a starting point; and (iii) PageRank (PR) that
runs either for up to one hundred iterations or until a conver-
gence threshold is reached, which we set as 𝜖 = 0.01.

The computation of the running global average requires main-
taining only a counter and a sum over all active relationship prop-
erties. No expensive dependency tracking is required for dele-
tions, which results in up to 9× and 46.5× performance speedup
for all graphs with 10 and 100 snapshots, respectively. BFS and
PageRank exhibit lower speedups (between 2.3-12× and 3.5-8.3×)
because changes must propagate through the graph to compute
the subsequent result. Specifically, PageRank requires completing
all iterations (or reaching convergence) for the affected nodes,
which impacts performance. Nonetheless, this experiment shows
that: (i) our dynamic graph data structures can efficiently handle
updates while enabling incremental graph analytics for labeled
property graphs; and (ii) using more snapshots increases the
opportunities for exploiting past computations.

6.7 Temporal Cypher over Bolt
In the previous experiments (Secs. 6.2, 6.3, and 6.6), we accessed
Aion using the embedded mode of Neo4j which binds directly
to the running binary in-process. However, because of the addi-
tional worker threads dedicated to query compilation, transaction
management, and networking, these execution layers increase
ITLB, data, and instruction cache misses, thus potentially low-
ering performance. To explore how Aion’s design copes with
such systemic overheads, we evaluate it using temporal Cypher
queries in a more typical client-server arrangement over Bolt
(Neo4j’s communication protocol).

511

In Fig. 13, we emulate three OLTPworkloads in which 32 client
threads (each pinned to one available CPU core) perform read
and write transactions using Cypher. The reads retrieve temporal
graph entities at arbitrary time points, and the writes create or
update nodes and relationships, thus updating Aion. We use the
following read-write ratios: (i) read-only workload, (ii) 10%writes,
and (iii) 20% writes. For the read-only workload, we observe
that Aion exhibits similar performance for all workloads with
close to 37 K queries/ s and saturates the throughput of read-only
Neo4j transactions with Bolt. When introducing 10% writes, the
throughput drops by 20%. With 20% writes, the drop is nearly 35%
compared to the read-only scenario. Overall, Aion can handle
mixed transactional workloads efficiently.

Next, we evaluate the speedup of incremental graph computa-
tions over classic Neo4j. Compared to the previous experiment,
these Cypher queries can be considered long-running read-write
transactions [15], and we study their performance in isolation by
running a single global query at a time. Similar to the GDS [57]
implementation of graph algorithms, we use procedures with ded-
icated pools of worker threads and memory. For fairness, instead
of constructing a static CSR for each snapshot, we execute ana-
lytics on top of our dynamic graph representation (Sec. 5.2) and
store the results in GraphStore to avoid serialization overheads
(i.e., users can later request parts or full results). Fig. 14 shows that
incremental execution over procedures yields higher speedups
for global average (9-61×) and BFS (3.5-12×) compared to Sec. 6.6
because it removes repetitive query compilation and task sched-
uling overheads. Finally, both experiments with Bolt demonstrate
the importance of our memory reduction optimizations for effi-
cient end-to-end temporal analytics, as multiple snapshots and
results can be stored in memory along with Neo4j’s page cache.

7 RELATEDWORK
Graph analytics systems, such as Pregel [43], PowerGraph [25],
GraphLab [41], Giraph [17], and GraphX [81], focus on high-
performance static graph processing by scaling out to a cluster
of nodes. Gradoop [62] is a temporal distributed graph engine
atop Flink [12]. Raphtory [67] provides fine-grained in-memory
temporal storage without transactional or multigraph support.
However, both Gradoop and Raphtory require an all-history scan
followed by a filter to retrieve valid (sub)graphs at arbitrary time
points. Unlike this design, Aion supports general-purpose tem-
poral analytics with efficient local pattern-matching and global
query execution.
Streaming graph systems, such as GraphInc [11], Kineograph
[16], Kickstarter [78], and GraphBolt [44], enable efficient an-
alytics on streaming graphs without the capability of query-
ing the graph history. Compared to our tag and reset approach
for incremental execution, Kickstarter [78] uses lightweight de-
pendency tracking that enables pruning unnecessary compu-
tations. GraphBolt [44] performs analysis over non-monotonic
algorithms, while Aion can only handle algorithms that con-
verge to correct results independently of node initialization. Both
approaches could be integrated into Aion to generalize incre-
mental graph computations. Naiad [49] enables non-monotonic
incremental execution by indexing the data differences in its com-
putation model. However, Naiad is not specialized for graph oper-
ations [44], and it cannot handle efficiently historical queries [31].
Dynamic graph data structures. Llama [42] and Teseo [19]
have a CSR-design, while Stinger [21], GraphOne [37], Liveg-
raph [83], and Sortledton [23] use adjacency lists for dynamic

graph storage. These graph representations offer different func-
tional characteristics, such as read- [23] versus write-optimized
[19, 42] storage or transactional guarantees [19, 23, 83]. Apart
from Livegraph and Stinger, the remaining representations are
not designed for dynamic LPGs and, thus, are unsuitable for
Aion. Still, Livegraph and Stinger introduce runtime (i.e., con-
current read and write accesses) and memory overheads (e.g.,
over 100 GB memory consumption for ingesting a graph similar
to Orkut [19, 23]) that are prohibitive for maintaining multiple
graph versions in memory. Instead, Aion uses a more compact
memory representation and handles concurrency at the execu-
tion level (i.e., updates precede reads).
Temporal graph analytics.While model-based approaches [13,
20, 64] allow graph DBMSs without native temporal support to
store time-evolving graphs, they introduce significant storage
and runtime overheads. Snapshot-based approaches [27, 30, 34,
35, 45] use snapshots and delta logs to accelerate global queries.
Chronos [27] is an offline temporal framework [9] that stores
graph entities from different snapshots together to increase cache
locality but requires an expensive preparation step for snapshot
retrieval [31]. DeltaGraph [34] proposes a hierarchical index for
storing multiple snapshots efficiently, and Clock-G [45] reduces
the storage footprint with the 𝛿-Copy+Log technique. Tegra [31]
stores graph history based on persistent ARTs [39] and allows
sharing arbitrary computations across snapshots for fast ad-hoc
window analytics. These snapshot-based systems, however, are
not designed for local pattern-matching queries and require full
graph reconstruction. Systems that use fine-grained storage [28,
68, 76] face similar challenges with model-based approaches for
global query execution. Aion provides a hybrid storage solution
that works well for a broader range of workloads.

Other optimizations for evolving graphs include: (i) computa-
tion reordering to share results and communication across snap-
shots [73, 77]; and (ii) sharing results between queries [1]. These
techniques are orthogonal to our work, which uses incremental
execution for temporal analytics. TeGraph [29] describes tem-
poral paths as a topological-optimum problem, which is solved
using a single scan model and an efficient time-aware format.

8 CONCLUSION
In this work, we formalize time-evolving graphs based on the
LPG model to enable (bi-)temporal analytics. Based on this for-
malization, we developed Aion to achieve efficient analytics
irrespective of workload characteristics. Aion exposes a simple
API to query the two dimensions of temporal graphs (time and
graph size) and achieves efficient execution for both using a hy-
brid storage approach. In addition, it introduces efficient graph
data structures that enable fast incremental graph computations.
Consequently, Aion achieves comparable or better performance
to existing state-of-the-art approaches and improves temporal
analytics computations by 3.5-61.5× over the Neo4j graph DBMS.

REFERENCES
[1] Mahbod Afarin, Chao Gao, Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv

Gupta. 2023. CommonGraph: Graph Analytics on Evolving Data. In ASPLOS.
[2] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh Haberman,

Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle.
2013. Millwheel: Fault-tolerant stream processing at internet scale. Proc. VLDB
Endow. (2013).

[3] Tyler Akidau, Paul Barbier, Istvan Cseri, Fabian Hueske, Tyler Jones, Sasha
Lionheart, Daniel Mills, Dzmitry Pauliukevich, Lukas Probst, Niklas Semmler,
et al. 2023. What’s the Difference? Incremental Processing with Change
Queries in Snowflake. Proc. ACM Manag. Data (2023).

512

[4] Amazon. 2023. Amazon Elastic Block Store. https://aws.amazon.com/ebs/.
Last access: February 26, 2024.

[5] Amazon Neptune. 2023. https://aws.amazon.com/neptune/. Last access:
February 26, 2024.

[6] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyga-
niak, and Zachary Ives. 2007. Dbpedia: A nucleus for a web of open data. In
Proc. Int. Semant. Web Conf.

[7] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. 2006.
Group formation in large social networks: membership, growth, and evolution.
In SIGKDD.

[8] Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. 2010. Fast incremental
and personalized pagerank. arXiv (2010).

[9] Maciej Besta, Marc Fischer, Vasiliki Kalavri, Michael Kapralov, and Torsten
Hoefler. 2021. Practice of streaming processing of dynamic graphs: Concepts,
models, and systems. TPDS (2021).

[10] Jaewook Byun, Sungpil Woo, and Daeyoung Kim. 2020. ChronoGraph: En-
abling Temporal Graph Traversals for Efficient Information Diffusion Analysis
over Time. TKDE (2020).

[11] Zhuhua Cai, Dionysios Logothetis, and Georgos Siganos. 2012. Facilitating
real-time graph mining. In CouldDB.

[12] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, VolkerMarkl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache Flink™: Stream and Batch Processing in a
Single Engine. Data Eng. Bull. (2015).

[13] Ciro Cattuto, Marco Quaggiotto, André Panisson, and Alex Averbuch. 2013.
Time-varying social networks in a graph database: a Neo4j use case. In
GRADES.

[14] Samy Chambi, Daniel Lemire, Owen Kaser, and Robert Godin. 2016. Better
bitmap performance with roaring bitmaps. Software: practice and experience
(2016).

[15] Audrey Cheng, Jack Waudby, Hugo Firth, Natacha Crooks, and Ion Stoica.
2024. Mammoths Are Slow: The Overlooked Transactions of Graph Data. Proc.
VLDB Endow. (2024).

[16] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming
Wu, Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. 2012. Kineograph:
taking the pulse of a fast-changing and connected world. In EuroSys.

[17] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi
Muthukrishnan. 2015. One trillion edges: Graph processing at facebook-scale.
Proc. VLDB Endow. (2015).

[18] Eclipse Collections. 2023. https://github.com/eclipse/eclipse-collections. Last
access: February 26, 2024.

[19] Dean De Leo and Peter Boncz. 2021. Teseo and the analysis of structural
dynamic graphs. Proc. VLDB Endow. (2021).

[20] Ariel Debrouvier, Eliseo Parodi, Matías Perazzo, Valeria Soliani, and Alejandro
Vaisman. 2021. A model and query language for temporal graph databases.
VLDB Journal (2021).

[21] David Ediger, Rob McColl, Jason Riedy, and David A Bader. 2012. Stinger:
High performance data structure for streaming graphs. In HPEC.

[22] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias
Lindaaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer,
and Andrés Taylor. 2018. Cypher: An evolving query language for property
graphs. In SIGMOD.

[23] Per Fuchs, Domagoj Margan, and Jana Giceva. 2022. Sortledton: a universal,
transactional graph data structure. Proc. VLDB Endow. (2022).

[24] Betsy George and Shashi Shekhar. 2008. Time-aggregated graphs for modeling
spatio-temporal networks. Journal on Data Semantics XI (2008).

[25] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos
Guestrin. 2012. {PowerGraph}: Distributed {Graph-Parallel} computation
on natural graphs. In OSDI.

[26] Hassan Halawa and Matei Ripeanu. 2021. Position paper: bitemporal dynamic
graph analytics. In GRADES.

[27] Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou,
Vijayan Prabhakaran, Wenguang Chen, and Enhong Chen. 2014. Chronos: a
graph engine for temporal graph analysis. In EuroSys.

[28] Jiamin Hou, Zhouyu Wang, Zhanhao Zhao, Wei Lu, and Xiaoyong Du. 2023.
An Efficient Built-in Temporal Support in MVCC-based Graph Databases.

[29] Chengying Huan, Hang Liu, Mengxing Liu, Yongchao Liu, Changhua He, Kang
Chen, Jinlei Jiang, Yongwei Wu, and Shuaiwen Leon Song. 2022. TeGraph: A
Novel General-Purpose Temporal Graph Computing Engine. In ICDE.

[30] Anand Padmanabha Iyer, Li Erran Li, Tathagata Das, and Ion Stoica. 2016.
Time-evolving graph processing at scale. In GRADES.

[31] Anand Padmanabha Iyer, Qifan Pu, Kishan Patel, Joseph E Gonzalez, and Ion
Stoica. 2021. TEGRA: Efficient Ad-Hoc Analytics on Evolving Graphs. In
NSDI.

[32] javaCC. 2023. https://github.com/javacc/javacc. Last access: February 26,
2024.

[33] Christian S Jensen, James Clifford, Ramez Elmasri, Shashi K Gadia, Pat Hayes,
Sushil Jajodia, Curtis Dyreson, Fabio Grandi, Wolfgang Käfer, Nick Kline, et al.
1994. A consensus glossary of temporal database concepts. Sigmod Record
(1994).

[34] Udayan Khurana and Amol Deshpande. 2013. Efficient snapshot retrieval over
historical graph data. In ICDE.

[35] Georgia Koloniari, Dimitris Souravlias, and Evaggelia Pitoura. 2013. On graph
deltas for historical queries. arXiv (2013).

[36] Krishna Kulkarni and Jan-Eike Michels. 2012. Temporal features in SQL: 2011.
Sigmod Record (2012).

[37] Pradeep Kumar and H Howie Huang. 2020. Graphone: A data store for real-
time analytics on evolving graphs. TOS (2020).

[38] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting dynamic
embedding trajectory in temporal interaction networks. In SIGKDD.

[39] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix
tree: ARTful indexing for main-memory databases. In ICDE.

[40] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Governance in
social media: A case study of the Wikipedia promotion process. In ICWSM.

[41] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola,
and Joseph M. Hellerstein. 2012. Distributed GraphLab: A Framework for
Machine Learning and Data Mining in the Cloud. Proc. VLDB Endow. (2012).

[42] Peter Macko, Virendra J Marathe, Daniel W Margo, and Margo I Seltzer. 2015.
Llama: Efficient graph analytics using large multiversioned arrays. In ICDE.

[43] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for
large-scale graph processing. In SIGMOD.

[44] Mugilan Mariappan and Keval Vora. 2019. Graphbolt: Dependency-driven
synchronous processing of streaming graphs. In EuroSys.

[45] Maria Massri, Zoltan Miklos, Philippe Raipin, and Pierre Meye. 2022. Clock-G:
A temporal graph management system with space-efficient storage technique.
In ICDE.

[46] MemGraph. 2023. https://memgraph.com/. Last access: February 26, 2024.
[47] Memgraph. 2023. Triggers. https://memgraph.com/docs/fundamentals/

triggers. Last access: February 26, 2024.
[48] Alan Mislove, Massimiliano Marcon, Krishna P Gummadi, Peter Druschel,

and Bobby Bhattacharjee. 2007. Measurement and analysis of online social
networks. In SIGCOMM.

[49] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martín Abadi. 2013. Naiad: a timely dataflow system. In SOSP.

[50] Neo4j. 2010. Neo4j Graph Data Platform. https://neo4j.com/. Last access:
February 26, 2024.

[51] Neo4j. 2020. Best Practices to Make (Very)
Large Updates in Neo4j. https://neo4j.com/blog/
nodes-2019-best-practices-to-make-large-updates-in-neo4j/. Last
access: February 26, 2024.

[52] Neo4j. 2021. Neo4j Breaks Scale Barrier with Tril-
lion+ Relationship Graph. https://neo4j.com/press-releases/
neo4j-scales-trillion-plus-relationship-graph/. Last access: February
26, 2024.

[53] Neo4j. 2022. Indexes for search performance. https://neo4j.com/docs/
cypher-manual/current/indexes-for-search-performance/. Last access: Febru-
ary 26, 2024.

[54] Neo4j. 2022. Understanding Neo4j’s data on disk. https://neo4j.com/developer/
kb/understanding-data-on-disk/. Last access: February 26, 2024.

[55] Neo4j. 2023. https://neo4j.com/docs/bolt/current/bolt/. Last access: February
26, 2024.

[56] Neo4j. 2023. Backup and restore. https://neo4j.com/docs/operations-manual/
current/backup-restore/. Last access: February 26, 2024.

[57] Neo4j. 2023. Neo4j Graph Data Science. https://github.com/neo4j/
graph-data-science. Last access: February 26, 2024.

[58] Oracle. 2023. Implementing Temporal Validity. https://www.oracle.com/
webfolder/technetwork/tutorials/obe/db/12c/r1/ilm/temporal/temporal.
html. Last access: February 26, 2024.

[59] Pometry. 2023. Raphtory. https://github.com/Pometry/Raphtory. Last access:
February 26, 2024.

[60] Gartner Research. 2023. Market Guide for Graph Database Management
Systems. https://www.gartner.com/en/documents/4018220. Last access:
February 26, 2024.

[61] Ian Robinson, Jim Webber, and Emil Eifrem. 2015. Graph databases: new
opportunities for connected data.

[62] Christopher Rost, Kevin Gomez, Matthias Täschner, Philip Fritzsche, Lucas
Schons, Lukas Christ, Timo Adameit, Martin Junghanns, and Erhard Rahm.
2022. Distributed temporal graph analytics with GRADOOP. VLDB journal
(2022).

[63] Betty Salzberg and Vassilis J Tsotras. 1999. Comparison of access methods for
time-evolving data. CSUR (1999).

[64] Konstantinos Semertzidis and Evaggelia Pitoura. 2016. Time Traveling in
Graphs using a Graph Database.. In EDBT/ICDT Workshops.

[65] Sijie Shen, Zihang Yao, Lin Shi, Lei Wang, Longbin Lai, Qian Tao, Li Su, Rong
Chen, Wenyuan Yu, Haibo Chen, et al. 2023. Bridging the Gap between
Relational {OLTP} and Graph-based {OLAP}. In ATC.

[66] SQL Server. 2023. Why temporal? https://learn.microsoft.com/en-us/
sql/relational-databases/tables/temporal-tables?view=sql-server-ver16#
why-temporal. Last access: February 26, 2024.

[67] Benjamin Steer, NaomiArnold, Cheick Tidiane Ba, Renaud Lambiotte, Haaroon
Yousaf, Lucas Jeub, Fabian Murariu, Shivam Kapoor, Pedro Rico, Rachel Chan,
et al. 2023. Raphtory: The temporal graph engine for Rust and Python. arXiv
(2023).

[68] Benjamin Steer, Felix Cuadrado, and Richard Clegg. 2020. Raphtory: Streaming
analysis of distributed temporal graphs. Future Generation Computer Systems
(2020).

513

[69] Lubos Takac and Michal Zabovsky. 2012. Data analysis in public social net-
works. In International scientific conference and international workshop present
day trends of innovations.

[70] Kanat Tangwongsan, Martin Hirzel, and Scott Schneider. 2021. In-order sliding-
window aggregation in worst-case constant time. The VLDB Journal (2021).

[71] Kanat Tangwongsan, Martin Hirzel, and Scott Schneider. 2023. Out-of-Order
Sliding-Window Aggregation with Efficient Bulk Evictions and Insertions.
Proc. VLDB Endow. (2023).

[72] Daniel ten Wolde, Tavneet Singh, Gábor Szárnyas, and Peter Boncz. 2023.
DuckPGQ: Efficient property graph queries in an analytical RDBMS. In CIDR.

[73] Manuel Then, Timo Kersten, Stephan Günnemann, Alfons Kemper, and
Thomas Neumann. 2017. Automatic algorithm transformation for efficient
multi-snapshot analytics on temporal graphs. Proc. VLDB Endow. (2017).

[74] Georgios Theodorakis, Alexandros Koliousis, Peter Pietzuch, and Holger Pirk.
2020. Lightsaber: Efficient window aggregation on multi-core processors. In
SIGMOD.

[75] TigerGraph. 2023. https://www.tigergraph.com/. Last access: February 26,
2024.

[76] Warut D Vijitbenjaronk, Jinho Lee, Toyotaro Suzumura, and Gabriel Tanase.
2017. Scalable time-versioning support for property graph databases. In Big
Data.

[77] Keval Vora, Rajiv Gupta, and Guoqing Xu. 2016. Synergistic analysis of
evolving graphs. TACO (2016).

[78] Keval Vora, Rajiv Gupta, and Guoqing Xu. 2017. Kickstarter: Fast and accurate
computations on streaming graphs via trimmed approximations. In ASPLOS.

[79] Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan Xu.
2014. Path problems in temporal graphs. Proc. VLDB Endow. (2014).

[80] Yingjun Wu, Wentian Guo, Chee-Yong Chan, and Kian-Lee Tan. 2017. Fast
failure recovery for main-memory dbmss on multicores. In SIGMOD.

[81] Reynold S Xin, Joseph E Gonzalez, Michael J Franklin, and Ion Stoica. 2013.
Graphx: A resilient distributed graph system on spark. In GRADES.

[82] Jaewon Yang and Jure Leskovec. 2012. Defining and evaluating network
communities based on ground-truth. In ICDM.

[83] Xiaowei Zhu, Guanyu Feng, Marco Serafini, Xiaosong Ma, Jiping Yu, Lei Xie,
Ashraf Aboulnaga, and Wenguang Chen. 2020. LiveGraph: A Transactional
Graph Storage System with Purely Sequential Adjacency List Scans. Proc.
VLDB Endow. (2020).

514

